Nanoscale measurement of the power spectral density of surface roughness: how to solve a difficult experimental challenge
نویسندگان
چکیده
In this study, we show that the correct determination of surface morphology using scanning force microscopy (SFM) imaging and power spectral density (PSD) analysis of the surface roughness is an extremely demanding task that is easily affected by experimental parameters such as scan speed and feedback parameters. We present examples were the measured topography data is significantly influenced by the feedback response of the SFM system and the PSD curves calculated from this experimental data do not correspond to that of the true topography. Instead, either features are "lost" due to low pass filtering or features are "created" due to oscillation of the feedback loop. In order to overcome these serious problems we show that the interaction signal (error signal) can be used not only to quantitatively control but also to significantly improve the quality of the topography raw data used for the PSD analysis. In particular, the calibrated error signal image can be used in combination with the topography image in order to obtain a correct representation of surface morphology ("true" topographic image). From this "true" topographic image a faithful determination of the PSD of surface morphology is possible. The corresponding PSD curve is not affected by the fine-tuning of feedback parameters, and allows for much faster image acquisition speeds without loss of information in the PSD curve.
منابع مشابه
Experimental Investigation of the Surface Roughness in Grinding of BK7 Optical Glass in Brittle Mode
Surface roughness is a significant parameter which determines the efficiency of optical components. Surface damages induced by grinding strongly influence the mechanical strength and optical quality of optical glasses. It is meaningful to rapid evaluate the surface roughness through the measurement of different grinding parameters. In this study, a cup diamond wheel (D64) is used in grinding pr...
متن کاملExperimental Investigation of the Surface Roughness in Grinding of BK7 Optical Glass in Brittle Mode
Surface roughness is a significant parameter which determines the efficiency of optical components. Surface damages induced by grinding strongly influence the mechanical strength and optical quality of optical glasses. It is meaningful to rapid evaluate the surface roughness through the measurement of different grinding parameters. In this study, a cup diamond wheel (D64) is used in grinding pr...
متن کاملApplication of Scanning Electron and Atomic Force Mode Microscopy on inscription from Proto-Elamite period in Tappeh Sofalin
The study of cultural heritage artifacts and the research of a protection and restoration intervention create with - and are often limited to - a complete characterization of their surface. This is not only factual for museum objects, but also for archaeological artifacts, because the object as it was discovered may contain precious unknown information that could be lost by too much aggressive ...
متن کاملOPTICAL PROPERTIES OF THIN Cu FILMS AS A FUNCTION OF SUBSTRATE TEMPERATURE
Copper films (250 nm) deposited on glass substrates, at different substrate temperatures. Their optical properties were measured by ellipsometery (single wavelength of 589.3 nm) and spectrophotometery in the spectral range of 200–2600 nm. Kramers Kronig method was used for the analysis of the reflectivity curves of Cu films to obtain the optical constants of the films, while ellipsometery measu...
متن کاملInvestigating on the Effects of Random Irregularities of Railway Track by Half-Bogie Model
The vibrations produced by trains include two parts which are deterministic and random vibrations. Due to variation of dynamic loads and patterns of load-time, the random vibration of moving train is one of the most important issues in the field of railway engineering. One of the important sources in producing the train vibrations is rail roughness and irregularities. In this paper, responses o...
متن کامل